Prerequisites
- Linear Algebra
- Matrix Calculus
- Probability & Statistics
Topics
Basics
- Bias & Variance
- Regularization & Norms
- Optimization
Regression
- Simple/Multiple Linear Regression
- Polynomial Regression
- Logistic Regression
- Support Vector Regression
- Decision Treee Regression
- Random Forest Regression
Classification
- Logistic Regression
- K-Nearest Neighbors
- Support Vector Machine (SVM)
- Kernel SVM
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
Clustering
- K-Means Clustering
- Hierarchical Clustering
Association Rule Learning
- Apriori
- Eclat
Dimensionality Reduction
- Independent Component Analysis (ICA)
- Principal Component Analysis (PCA)
- Kernel PCA
- Linear Discriminant Analysis (LDA)
Boosting - Combining many classifiers
- XGBoost
- Adaboost
& so on..